

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : Design of Machine Elements-II (20ME0320)Course & Branch: B.Tech - MEYear & Sem: III-B.Tech & II SEMRegulation: R20

<u>UNIT I</u>

DESIGN OF MECHANICAL SPRINGS

1.	(a)Classify springs according to their shapes. Draw neat sketches indicating in each case whether stresses are induced by bending or by	L4	CO1	4M
	torsion.			
	(b)Design a spring for a balance to measure 0 to 1000 N over a scale of	L6	CO1	8M
	length 80 mm. The spring is to be enclosed in a casing of 25 mm			
	diameter. The approximate number of turns is 30. The modulus of rigidity			
	is 85 kN/mm ² . Also calculate the maximum shear stress induced.			
2.	(a) Explain what you understand by A.M. Wahl's factor and state its	L2	CO1	4M
	importance in the design of helical springs.			
	(b) A mechanism used in printing machinery consists of a tension spring	L5	CO1	8M
	assembled with a preload of 30 N. The wire diameter of spring is 2 mm			
	with a spring index of 6. The spring has 18 active coils. The spring wire is			
	hard drawn and oil tempered having following material properties: Design			
	shear stress = 680 MPa, Modulus of rigidity = 80 kN/mm ² . Determine: (i)			
	The initial torsional shear stress in the wire. (ii) Spring rate. (iii) The force			
	to cause the body of the spring to its yield strength.			
3.	(a)What is the function of a spring?	L1	CO1	3M
	(b) A helical spring is made from a wire of 6 mm diameter and has	L5	CO1	9M
	outside diameter of 75 mm. If the permissible shear stress is 350 MPa and			
	modulus of rigidity 84 kN/mm ² , find the axial load which the spring can			
	carry and the deflection per active turn.			

	QUESTION BANK	202	3-202 4	ŀ
4.	 A compression spring made of alloy steel of coil diameter 75 mm and spring index 6.0, number of active coil 20 is subjected to a load of 1.2 kN. Calculate: (i) The maximum stress developed in the coil. (ii) The deflection produced. (iii) The spring rate. 	L5	CO1	12M
5.	It is required to design a helical compression spring with plain ends, made of cold drawn plain carbon steel, for carrying a maximum pure static force of 1000 N. The ultimate tensile strength and modulus of rigidity for spring material are 1430 N/mm ² and 85 N/mm ² respectively. The spring rate is 48 N/mm. If spring index is 5, Determine: (i) Wire diameter. (ii) Total number of coils. (iii) Free length and (iv) Pitch.	L5	CO1	12M
6.	Design a helical compression spring for a maximum load of 1000 N for a deflection of 25 mm using the value of spring index as 5. The maximum permissible shear stress for spring wire is 420 MPa and modulus of rigidity is 84 kN/mm ² .	L2	CO1	12M
7.	 A bumper consisting of two helical steel springs of circular section brings to rest, a railway wagon of mass 1500 kg and moving at 1.2 m/s. While doing so, the springs are compressed by 150 mm. The mean diameter of the coils is 6 times the wire diameter. The permissible shear stress is 400 MPa. Determine: (i) Maximum force on each spring. (ii) Wire diameter of the spring. (iii) Mean diameter of the coils and (iv) Number of active coils. Take G = 0.84 x 105MPa. 	L5	CO1	12M
8.	Design a close coiled helical compression spring for a service load ranging from 2250 N to 2750 N. The axial deflection of the spring for the load range is 6 mm. Assume a spring index of 5. The permissible shear stress intensity is 420 MPa and modulus of rigidity, $G = 84 \text{ kN/mm}^2$.	L6	CO1	12M

0		TC	001	1010
9.	Design and draw a valve spring of a petrol engine for the following	L6	CO1	12M
	operating conditions :			
	Spring load when the value is open = 400 N			
	Spring load when the valve is $closed = 250 N$			
	Maximum inside diameter of spring = 25 mm			
	Length of the spring when the valve is open= 40 mm			
	Length of the spring when the valve is closed= 50 mm			
	Maximum permissible shear stress = 400 MPa			
10.	A semi-elliptical laminated vehicle spring to carry a load of 6000 N is to	L5	CO1	12M
	consist of seven leaves 65 mm wide, two of the leaves extending the full			
	length of the spring. The spring is to be 1.1 m in length and attached to the			
	axle by two U-bolts 80 mm apart. The bolts hold the central portion of the			
	spring so rigidly that they may be considered equivalent to a band having			
	a width equal to the distance between the bolts. Assume a design stress for			
	spring material as 350 MPa. Determine: (i) Thickness of leaves. (ii)			
	Deflection of spring. (iii) Diameter of eye. (iv) Length of leaves.			
	(v)Radius to which leaves should be initially bent.			

<u>UNIT II</u>

DESIGN OF SLIDING CONTACT & ROLLING CONTACT BEARINGS

1.	Design a journal bearing for a centrifugal pump with the following data.	L6	CO2	12M
1.	Diameter of journal =150mm			12111
	Load on bearing =40kN			
	Speed of journal =900 RPM			
2.	Design a journal bearing for centrifugal pump from the following data:	L5	CO2	12M
	Load on the journal = 20 kN			
	Speed of the journal = 900 rpm			
	Type of oil SAE 10 for which absolute viscosity at $55^{\circ}C = 17$ centipoises			
	Ambient temperature of oil = 15.5° C			
	Maximum bearing pressure for the pump = 1.5 N/mm^2			
	Calculate also the mass of the lubricating oil required for artificial cooling			
	to rise in temperature of the oil limited to 10°C. Heat dissipation coefficient			
	$= 12.2 \text{ kN/m}^{2/\circ}\text{C}$			
3.	A 75mm journal bearing 100mm long is subjected to 2.5kN at 600rpm. If the	L5	CO2	12M
	room temperature is 240C, what viscosity of oil should be used to limit the			
	bearing surface temperature at 550C ,D/C=1000.			
4.	Following data is given for 3600 hydrodynamic bearings:	L5	CO2	12M
	journal diameter =100 mm, radial clearance =0.12mm,			
	radial load =50kN, bearing length =100 mm, journal speed =1440rpm			
	and viscosity of lubricant = 16CP.			
	Calculate (i) minimum film thickness (ii) coefficient of friction and			
	(iii) power lost in friction.			
5.	Design a journal bearing for centrifugal pump for the following data:	L6	CO2	12M
	Load on the journal = 12 kN,			
	Diameter of the journal =75mm,			
	Speed=1440 rpm,			
	Atmosphere temperature $=16^{\circ}C$			
	Operating temperature=60°C,			
	Absolute viscosity of oil at $60^{\circ}C = 23$ centipoise			

6.	A 70mm	machine shaf	t is to be s	upported at	the ends	s. It or	erate	s	Ι	_6	CO2	12M
		sly for 8hrs p				-			nd			
		le for one of th	•			-						
	S.No	Fraction of	-	Thrust	Speed,	X	Y	Z				
		cycle	load,N	load,N	rpm							
	1	0.25	3500	1000	600	0.56	1.2	1.5				
	2	0.25	3000	1000	800	0.56	1.2	1.5				
	3	0.5	4000	2000	900	0.56	1.4	1.5				
7.	Select a s	uitable spheric	al roller be	aring from	SKF serie	es 2220	C to s	upport	aI	_6	CO2	12M
	radial loa	d of 4kN and	axial load	of 2kN. Mi	nimum li	fe requ	ired i	is 1000	00			
	hrs at 100	0 rpm. For thi	s select bea	ring find								
	(i) The ex	pected life une	der the give	n loads								
	(ii) The e	quivalent load	that can be	e supported	with a pr	obabili	ty of	surviv	al			
	of 95% w	ith 10000 hou	rs.									
8.	The radia	l load on a r	oller bearin	ig varies as	follows	a load	l of 5	50 kN	is I	_5	CO2	12M
	acting 20%	% of time at 5	00 rpm and	a load of 40	0kN is ac	ting 50	% of	the tin	ne			
	at 600 rp	m. In the rer	naining tin	ne the load	varies f	rom 40)kN 1	to 10k	N			
	-	t 700 rpm. Sel		-		series t	for a 1	life of	at			
	least 4000) hours. The op	perating ten	nperature is	175°C.							
9.	The ball b	bearing for the	drilling ma	chine spind	le is rotat	ing at .	3000r	pm. It	I	.6	CO2	12M
		ed to radial loa	-	-		-		-				
	work 50 h	ours per week	for one year	ar. Design a	u suitable	bearing	g if th	ie				
	diameter o	of the spindle	is 40mm.									
10	A 30BC0	3 deep groove	e ball bearing	ng is to ope	erate at 1	600rpn	n and	carrie	s I	_5	CO2	12M
	8kN radia	al load and 6k	N thrust lo	oad. The be	aring is a	subject	ed to	a ligh	nt			
	shock load	d. Determine t	he rating lit	fe of the bea	aring.							
L	l								1		<u> </u>	

UNIT III

DESIGN OF CURVED BEAMS & DESIGN OF POWER TRANSMISSION SYSTEMS

(b). A crane hook has a section, which for the purpose of analysis is considered trapezoidal as shown in fig. it is made of plain carbon steel with an yield strength of 350Mpa in tension. Determine the load capacity of the hook for a factor of safety 3.		CO3	10
of the hook for a factor of safety 3. $F_{50} \xrightarrow{r_n = 92.26}{35} \xrightarrow{r_n = 92.26}{100} \xrightarrow{r_n = 92.26}{10} $			
$r_n = 92.26$			
R_{50}			
An open S link shown in fig. is made of steel rod of diameter 12mm. Determine the maximum tensile and shear stress.	L5	CO3	12
Diameter 10mm 1kN + 2-50			
A C- clamp is to bear the force' F' applied on to it. It has a T-section as	L5	CO3	12
shown in fig. if the maximum tensile strength in the clamp is limited to 130MPa. Find 'F'.			
F 50 R 25 Centroidal axis			
	A C- clamp is to bear the force' F' applied on to it. It has a T-section as shown in fig. if the maximum tensile strength in the clamp is limited to 130MPa. Find 'F'.	A C- clamp is to bear the force' F' applied on to it. It has a T-section as shown in fig. if the maximum tensile strength in the clamp is limited to 130MPa. Find 'F'.	A C- clamp is to bear the force' F' applied on to it. It has a T-section as shown in fig. if the maximum tensile strength in the clamp is limited to 130MPa. Find 'F'.

4.	The horizontal section of crane hook is symmetrical trapezium 120 mm	L4	CO3	12M
	deep, the inner width being 90 mm and outer width being 30 mm. The			
	hook is made of plain carbon steel 45C8 (σ_{yt} = 380 N/mm ²) and the factor			
	of safety is 3.5. Determine the load carrying capacity of the hook. Also			
	draw the crane hook and show the location at which maximum stress is			
	acting.			
	$\begin{array}{c} 120\\ 130\\ 130\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 1$			
5.	(a) List the materials used for belts? How are wire ropes designated?	L1	CO3	6M
	(b) Mention the materials used for Sheeve and its characteristics.	L1	CO3	6M
6.	An open belt connects two flat pulleys. Pulley diameters are 300 mm and	L4	CO4	12N
	450mm and the corresponding angles of cap are 160° and 210° . the			
	smaller pulley runs at 200rpm, μ =0.25. it is found that the belt is on the			
	point of slipping when 3kw is transmitted. To increase the power			
	transmitted two alternatives are suggested., namely (i) increase the initial			
	tension by10% and (ii) increasing μ by 10% by the application of a			
	suitable dressing to the belt. Which of these two methods would be more			
	effective ? find the percentage increase in power possible in each case.			
7.	Design a horizontal belt drive for a centrifugal blower, the belt driven at	L6	CO4	12N
	600rpm by a 15kw, 1750rpm electric motor. The centre distance is twice			
	600rpm by a 15kw, 1750rpm electric motor. The centre distance is twice the diameter of the larger pulley. The density of the belt			
	the diameter of the larger pulley. The density of the belt			
	the diameter of the larger pulley. The density of the belt material=1500kg/m3 maximum allowable stress =4MPa. μ 1=0.5 (motor			
	the diameter of the larger pulley. The density of the belt material=1500kg/m3 maximum allowable stress =4MPa. μ 1=0.5 (motor pulley), μ 2=0.4 (blower pulley); peripheral velocity of the belt=20m/s.			
	the diameter of the larger pulley. The density of the belt material=1500kg/m3 maximum allowable stress =4MPa. μ 1=0.5 (motor pulley), μ 2=0.4 (blower pulley); peripheral velocity of the belt=20m/s. Determine the following:			
	the diameter of the larger pulley. The density of the belt material=1500kg/m3 maximum allowable stress =4MPa. μ1=0.5 (motor pulley), μ2=0.4 (blower pulley); peripheral velocity of the belt=20m/s. Determine the following: i. Pulley diameters 			

8.	Two shafts whose centres are 1 metre apart are connected by a V-belt	L5	CO4	12M
	drive. The driving pulley is supplied with 95 Kw power and has an			
	effective diameter of 300 mm. It runs at 1000 r.p.m. while the driven			
	pulley runs at 375 r.p.m. The angle of groove on the pulleys is 40°.			
	Permissible tension in 400 mm2 cross-sectional area belt is 2.1 Mpa. The			
	material of the belt has density of 1100 kg / m3. The driven pulley is			
	overhung, the distance of the centre from the nearest bearing being 200			
	mm. The coefficient of friction between belt and pulley rim is 0.28.			
	Estimate: 1. The number of belts required.			
	2. Diameter of driven pulley shaft, if permissible shear stress is 42 Mpa.			
9.	A belt drive consists of two V-belts in parallel, on grooved pulleys of the	L5	CO4	12M
	same size. The angle of the groove is 30°. The cross-sectional area of each			
	belt is 750 mm ² and $\mu = 0.12$. The density of the belt material is 1.2 Mg/			
	m^3 and the maximum safe stress in the material is 7 Mpa. Calculate the			
	power that can be transmitted between pulleys of 300 mm diameter			
	rotating at 1500 r.p.m. Find also the shaft speed in r.p.m. at which the			
	power transmitted would be a maximum.			
10.	A rope drive is to transmit 250 kW from a pulley of 1.2 m diameter,	L5	CO4	12M
	running at a speed of 300 r.p.m. The angle of lap may be taken as π			
	radians. The groove half angle is 22.5°. The ropes to be used are 50 mm in			
	diameter. The mass of the rope is 1.3 kg per metre length and each rope			
	has a maximum pull of 2.2 kN, the coefficient of friction between rope			
	and pulley is 0.3. Determine the number of ropes required. If the overhang			
	of the pulley is 0.5 m, suggest suitable size for the pulley shaft if it is			
	made of steel with a shear stress of 40 Mpa.			
			1	1

<u>UNIT IV</u> SPUR AND HELICAL GEARS

1.	In a spur gear drive for a rock crusher, the gears are made of case	L6	CO5	12M
	hardened alloy steel. The pinion is transmitting 18 kW at 1200 rpm with a			
	gear ratio of 3.5. The gear is to work 8 hours/day for 3 years. Design the			
	drive.			
2.	A compressor running at 300 rpm is driven by 15kW, 1200rpm motor	L5	CO5	12M
	through 20 ⁰ full depth involute gears. The centre distance is 375mm.			
	choose the suitable materials for the pinion and gear, design the drive.			
3.	A pair of straight spur gears is required to reduce the speed of shaft from	L5	CO5	12M
	500 to 100 rpm while continuously running 12hr per day. The pinion is of			
	40C8 steel and has 20 teeth. The wheel is of cast iron of grade FG200 and			
	has 100 teeth. The gears are of 8mm module, 100 mm face width and 20°			
	pressure angle. Calculate power rating.			
4.	A bronze spur pinion rotating at 600 r.p.m. drives a cast iron spur gear at a	L5	CO5	12M
	transmission ratio of 4:1. The allowable static stresses for the bronze			
	pinion and cast iron gear are 84 MPa and 105 MPa respectively. The			
	pinion has 16 standard 20° full depth involute teeth of module 8 mm. The			
	face width of both the gears is 90 mm. Find the power that can be			
	transmitted from the standpoint of strength.			
5.	A pair of gears is to be designed to transmit 30kW for a pinion speed of	L6	CO5	12M
	1000 rpm and a speed ratio of 5. Design the gear train.			
6.	A helical gear set used in a paper pulping machine connects the driving	L5	CO5	12M
	motor to the blade shaft. A power of 20kW is transmitted by the motor at			
	1600rpm while the blade shaft runs at 400rpm. Due to space restrictions			
	the center distance between the gears is kept at 500mm. choosing suitable			
	materials for the gears design the 20° full depth involute helical gears with			
	a helix angle of 25° .			
7.	A Pair of parallel helical gears consists of 23 teeth pinion meshing with a	L5	CO5	12M
	46 gear teeth. The helix angle is 24° and the normal pressure angle is 21°.			
	Calculate: (i) transverse module (ii) transverse pressure angle (iii) The			
	Axial pitch (iv) the pitch circle diameters of the pinion and the gear (v)			
	the centre distance (vi) the addendum and the dedendum circle diameters			
	of the pinion.			

8.	A compressor running at 350 rpm is driven by 5 kW, 1400 rpm motor	L6	CO5	12M
	through 20 ^o full depth spur gears. The motor pinion is to be of C30 forged			
	steel hardened and tempered, and the driven gear is to be of cast iron			
	grade 35. Assuming medium shock condition, design the gear drive			
	completely. Take minimum number of teeth is 18 for the pinion. The			
	gears are working for one shift per day in an industrial atmosphere and to			
	work for two years before their replacement.			
9.	A pair of helical gears in a milling machine is used to transmit 4.5 kW at	L6	CO5	12M
	1000 rpm of the pinion and the velocity ratio is 3:1. The helix angle of the			
	gear is 15° and both gears are made of steel C45. The gears are 20° FDI			
	and the pinion is to have minimum of 20 teeth. The gear is to work 8			
	hrs/day for 3 years. Design the helical gears. Take the required hardness			
	for both gears is more than 350 BHN.			
10.	(a) Explain the causes of Gear tooth failure.	L2	CO5	6M
	(b) Write a short note on Gear materials.	L6	CO5	6M

<u>UNIT V</u>

DESIGN OF GEARS & DESIGN OF IC ENGINE PARTS

		•		
	(b) What is the function of piston? Explain piston troubles.	L1	CO6	6M
6.	(a) Enumerate the qualities of good cylinder liners.	L2	CO6	6M
	Efficiency of the worm drive.			
	on the worm; 2. Axial thrust and separating force on worm and 3.			
	mating teeth may be taken as 0.10. Calculate : 1. Tangential force acting			
	degrees full depth involute. The coefficient of friction between the			
	worm gear has 90 teeth of 6mm module. The tooth form is to be 20			
	r.p.m. The worm is triple threaded and has 65 mm pitch diameter. The			
5.	A worm drive transmits 15kW at 2000 r.p.m to a machine carriage at 75	L6	CO6	12M
	4.efficiency of the worm gearing.			
	3. Centre distance,			
	2. Velocity ratio			
	Find 1.the lead angle of the worm			
	the coefficient of friction of the worm gearing is 0.05.			
	diameter of 50mm. If the worm gear has 30 teeth of 14 1/2 degrees and			
4.	A triple threaded worm has teeth of 6mm module and pitch circle	L5	CO6	12M
	(iii) The dimensions of the worm(iv) the dimensions of the worm wheel.			
	(ii)Speed reduction			
	Calculate (i) Centre distance			
3.	A Pair of worm gear is designated as 2/54/10/5.	L5	CO6	12M
	(b) List the forces acting on the connecting rod.	L6	CO6	4M
	(iii) the cone distance.			
	(ii) the pitch angles for the pinion and gear; and			
	(i) the pitch circle diameters of the pinion and the gear.			
	48 teeth gear. The gears are mounted 0n shafts, which are intersecting at right angle. The module at the large end of the tooth is 4mm Calculate:			
2	(a) A pair of Straight bevel gears consists of a 30 teeth pinion meshing with a	L5	CO5	8M
	components of the resultant tooth force acting on the pinion.	T. 5	0.05	014
	and the pressure angle is 20°. Calculate the tangential, axial and radial			
	is supplied to the pinion which rotates at 800 rpm. The face width is 40mm			
	diameter of the pinion is 80mm and the large end of the tooth. A 5kW power			
1.	A Pair of Straight bevel gear has a velocity ratio of 2:1. The pitch circle	L5	CO5	12M

7. A four stroke diesel engine has the following specifications:	L5	CO6	12M
Brake power =5 kW; Speed = 1200 r.p.m; Indicated mean effective			
pressure = 0.35 N/mm^2 ; Mechanical efficiency = 80% .			
Determine: 1) Bore and length of the cylinder;			
2)Thickness of the cylinder head & 3)Size of studs for cylinder head.			
8. Design a connecting rod for an IC engine running at 1800rpm and	L6	CO6	12M
developing a maximum pressure of 3.15 N/mm2 the diameter of piston			
is 100mm, mass of the reciprocating parts per cylinder is 2.25kg, length			
of connecting rod is 380mm, stroke of piston is 190mm and			
compression ratio 6:1. Take a factor of safety of 6 for the design. Take			
length to diameter ratio for big end bearing as 1.3 and small end bearing			
as 2, corresponding bearing pressure as 10N/mm2 and 15 N/mm ² . The			
density of the material rod may be taken as 8000kg/m ³ and the			
allowable stress in the bolts as 60 N/mm2 and in cap as 80 N/mm ² . The			
rod is to be of I- section for which you can choose your own			
proportions. Draw a neat sketch. Use Rankin's formulae for which			
the numerator constant may be taken as 320 N/mm ² & denominator			
constant as 1/7500.			
9. Design a cast iron piston for a single acting four stroke engine for the	L6	CO6	12M
following data: Any other data required for the design may be assumed.			
Cylinder bore = 100mm Stroke = 125 mm, Maximum gas pressure = 5			
N/mm^2 , Indicated mean effective pressure = 0.75 N/mm, Mechanical			
efficiency = 80% , Fuel consumption = 0.15 kg per brake power per hour			
Higher calorific value of fuel = 42×103 kJ/kg Speed = 2000 rpm			
Tensile stress for cast iron (σ t) = 38 MPa.			
10. Design a plain carbon steel centre crank shaft for a single acting four	L6	CO6	12M
stroke single cylinder engine for the following data: Bore = 400 mm;			
Stroke = 600 mm; Engine speed = 200 r.p.m; Mean effective pressure =			
0.5 N/mm^2 ; Maximum combustion pressure = 2.5 N/mm^2 ; Weight of fly			
wheel used as a pulley = 50 kN; Total belt pull = 6.5 kN. When the			
crank has turned through 35 degrees from the top dead centre, the			
pressure on the piston is 1 N/mm ² and torque on the crank is maximum.			
The ratio of the connecting rod length to the crank radius is 5. Assume			
any other data required for the design.			
PREPARED BY: Ms. A. ASHA, M	r.G.V I) DELLI I	BABU
sign of Machine Elements-II (20ME0320)			Page